|
Echo suppression and echo cancellation are methods in telephony to improve voice quality by preventing echo from being created or removing it after it is already present. In addition to improving subjective quality, this process increases the capacity achieved through silence suppression by preventing echo from traveling across a network. These methods are commonly called acoustic echo suppression (AES) and acoustic echo cancellation (AEC), and more rarely line echo cancellation (LEC). In some cases, these terms are more precise, as there are various types and causes of echo with unique characteristics, including acoustic echo (sounds from a loudspeaker being reflected and recorded by a microphone, which can vary substantially over time) and line echo (electrical impulses caused by, e.g., coupling between the sending and receiving wires, impedance mismatches, electrical reflections, etc., which varies much less than acoustic echo). In practice, however, the same techniques are used to treat all types of echo, so an acoustic echo canceller can cancel line echo as well as acoustic echo. "AEC" in particular is commonly used to refer to echo cancelers in general, regardless of whether they were intended for acoustic echo, line echo, or both. Echo suppressors were developed in the 1950s in response to the first use of satellites for telecommunications, but they have since been largely supplanted by better performing echo cancellers. Although echo suppressors and echo cancellers have similar goals—preventing a speaking individual from hearing an echo of their own voice—the methods they use are different: * Echo suppressors work by detecting a voice signal going in one direction on a circuit, and then inserting a great deal of loss in the other direction. Usually the echo suppressor at the far-end of the circuit adds this loss when it detects voice coming from the near-end of the circuit. This added loss prevents the speaker from hearing his own voice. * Echo cancellation involves first recognizing the originally transmitted signal that re-appears, with some delay, in the transmitted or received signal. Once the echo is recognized, it can be removed by subtracting it from the transmitted or received signal. This technique is generally implemented digitally using a digital signal processor or software, although it can be implemented in analog circuits as well.〔〕 ITU standards (G.168 ) and (P.340 ) describe requirements and tests for echo cancellers in digital and PSTN applications, respectively. == History == In telephony, "echo" is very much like what one would experience yelling in a canyon. Echo is the reflected copy of one's voice heard some time later and a delayed version of the original. On a telephone, if the delay is fairly significant (more than a few hundred milliseconds), it is considered annoying. If the delay is very small (10s of milliseconds or less〔(【引用サイトリンク】title=Echo in Voice over IP Systems )〕), the phenomenon is called sidetone, and while not objectionable to humans, can interfere with the communication between data modems. If the delay is slightly longer, around 50 milliseconds, humans cannot hear the echo as a distinct sound, but instead hear a chorus effect which sounds like talking in a tunnel or cave.〔 In the earlier days of telecommunications, echo suppression was used to reduce the objectionable nature of echos to human users. One person speaks while the other listens, and they speak back and forth. An echo suppressor attempts to determine which is the primary direction and allows that channel to go forward. In the reverse channel, it places attenuation to block or "suppress" any signal on the assumption that the signal is echo. Naturally, such a device is not perfect. There are cases where both ends are active, and other cases where one end replies faster than an echo suppressor can switch directions to keep the echo attenuated but allow the remote talker to reply without attenuation. While effective, this approach leads to several problems: * Double-talk: It is fairly normal in conversation for both parties to speak at the same time, at least briefly. Because each echo suppressor will then detect voice energy coming from the far-end of the circuit, the effect would ordinarily be for loss to be inserted in both directions at once, effectively blocking both parties. To prevent this, echo suppressors can be set to detect voice activity from the near-end speaker and to fail to insert loss (or insert a smaller loss) when both the near-end speaker and far-end speaker are talking. This, of course, temporarily defeats the primary effect of having an echo suppressor at all. * Clipping: Since the echo suppressor is alternately inserting and removing loss, there is frequently a small delay when a new speaker begins talking that results in clipping the first syllable from that speaker's speech. * Dead-set: If the far-end party on a call is in a noisy environment, the near-end speaker will hear that background noise while the far-end speaker is talking, but the echo suppressor will suppress this background noise when the near-end speaker starts talking. The sudden absence of the background noise gives the near-end user the impression that the line has gone dead. These effects may be frustrating for both parties to a call, although the suppressor effectively deals with echo. In response to this, AT&T Bell Labs developed echo canceler theory in the early 1960s, which then resulted in laboratory echo cancelers in the late 1960s and commercial echo cancelers in the 1980s. The concept of an echo canceller is to synthesize an estimate of the echo from the talker's signal, and subtract that synthesis from the return path instead of switching attenuation into/out of the path. This technique requires adaptive signal processing to generate a signal accurate enough to effectively cancel the echo, where the echo can differ from the original due to various kinds of degradation along the way. Rapid advances in the implementation of digital signal processing allowed echo cancellers to be made smaller and more cost-effective. In the 1990s, echo cancellers were implemented within voice switches for the first time (in the Northern Telecom DMS-250) rather than as standalone devices. The integration of echo cancellation directly into the switch meant that echo cancellers could be reliably turned on or off on a call-by-call basis, removing the need for separate trunk groups for voice and data calls. Today's telephony technology often employs echo cancellers in small or handheld communications devices via a software voice engine, which provides cancellation of either acoustic echo or the residual echo introduced by a far-end PSTN gateway system; such systems typically cancel echo reflections with up to 64 milliseconds delay. Since invention at AT&T Bell Labs〔 echo cancellation algorithms have been improved and honed. Like all echo cancelling processes, these first algorithms were designed to anticipate the signal which would inevitably re-enter the transmission path, and cancel it out. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Echo suppression and cancellation」の詳細全文を読む スポンサード リンク
|